2017 Wireless Innovation Forum European Conference on Communications Technologies and Software Defined Radio

Can SCA 4.1 Replace STRS in Space Applications?

Ran Cheng, Li Zhou, Qi Tang, Dongtang Ma, Haitao Zhao, Shan Wang and Jibo Wei

National University of Defense Technology

May 17, 2017

- 1. Introduction
- 2. Core Framework Design
- 3. Testbed Implementation
- 4. Experiment Results and Analysis
- 5. Conclusion

Expectations

- Reduce the development cycle-time
- Reduce the development cost
- Increase the communication flexibility among space radios and ground stations

Challenges

- Strict SWaP constrained requirement
- Low capability of chips for space use
- Reuse of hardware and software

2017 Wireless Innovation Forum European Conference on Communications Technologies and Software Defined Radio

	SCA 2.2.2				STRS			SCA 4.1				
Waveform Applications and High Level Services				Wave	Waveform Applications and High Level Services			Waveform Applications and High Level Services				
	CORBA APIS CF APIS		POS	POSIX APIs STRS		STRS APIS POSIX AF		APIs	ls CF APIs			
	AEP	CORBA		Core Framework (CF)	AEP		Transfer Mechanism and Services	STRS Infrastructure	AEP	Transf Mechanis Servic	fer m and es	CF
			HAL AI	PI		HAL API				HAL API		
	BSP	Drivers		BSP	BSP Driv		Drivers	BSP		D	rivers	
		GPM	M Specialized HW			GPM		Specialized HW	GP	M		Specialized HW

SCA Development and Evolution

WInnComm-Europe 2017

2017 Wireless Innovation Forum European Conference on Communications Technologies and Software Defined Radio

The year of announcement of several SCA versions

SCA Evolution from 2.2.2 to 4.1

- Adopt "push model" behavior
- Remove dependence on CORBA
- Add static registration behavior
- Provide Units of Functionality (UOF) and SCA Profiles

Layered Framework Comparison

WInnComm-Europe 2017

2017 Wireless Innovation Forum European Conference on Communications Technologies and Software Defined Radio

SCA 4.1 layered framework

STRS layered framework

Core Framework Interfaces Comparison

WInnComm-Europe 2017

2017 Wireless Innovation Forum European Conference on **Communications Technologies and Software Defined Radio**

Infrastructure API

- **Basic Application Interfaces** - ComponentIdentifier
 - LifeCycle, etc.
- **Basic Device Interfaces** -AggregateDevice
 - -CapacityManagement, etc.
- Framework Control Interfaces -ApplicationManager -DeploymentAttributes, etc.
- Framework Service Interfaces -ComponentFactory -FileManager, etc.

Core Framework Interfaces Comparison

WInnComm-Europe 2017

2017 Wireless Innovation Forum European Conference on Communications Technologies and Software Defined Radio

STRS core framework interfaces

STRS core framework written in C simplifies the implementation

Infrastructure API

- Time Control
- File Control
- Application Control
- Messaging
- Application Setup
- Device Control
- Data Sink
- Data Source

Comparison Aspects and Variables

WInnComm-Europe 2017

2017 Wireless Innovation Forum European Conference on Communications Technologies and Software Defined Radio

- the static memory occupation
- inter-components communication delay
- waveform deployment delay
- waveform switching delay

- the packet size
- the total amount of packets
- the number of components

- The stub and skeleton combine to form the RMI frame protocol.
- The remote reference layer is adopted to find the communication object.
- The transport layer provides the interconnection of client and server based on the TCP/IP protocol.

RMI: Remote Method Invocation

Testbed Introduction

WInnComm-Europe 2017

2017 Wireless Innovation Forum European Conference on Communications Technologies and Software Defined Radio

Testbed: ZLSDR-1000

Main chip: ZYNQ 7030

- a dual-core of ARM Cortex-A9 (clock speed 667MHz)
- a FPGA of Kintex-7 (logic cells 125K, DSP Slices 400)

DDR memory size: 1GB

Operating system: Linux 3.17

General SDR platform (ZLSDR-1000)

Calculation of Communication Delay

WInnComm-Europe 2017

2017 Wireless Innovation Forum European Conference on Communications Technologies and Software Defined Radio

The inter-components communication time of **a** single link T = T2 - T1 component processing time zero The amount time of all links in inter-components communication T = TN - T1

Inter-components communication delay

Waveform Deployment & Switching Delay

WInnComm-Europe 2017

2017 Wireless Innovation Forum European Conference on Communications Technologies and Software Defined Radio

Waveform deployment delay and waveform switching delay

Experiment parameters

Parameter	Value
Number of components	3, 4,, 11
Packet size (bytes)	128, 256, 512, 1024, 2048, 4096
Amount of packets (10 ⁶)	1, 2,, 10

2017 Wireless Innovation Forum European Conference on Communications Technologies and Software Defined Radio

Static memory occupation comparison

Implementation	Static memory occupation (MB)
STRS	4.77
Lightweight SCA 4.1	27.82
Full SCA 4.1	77.20

Inter-components communication delay comparison with different packet size

Package size (bytes)	STRS (us)	Lightweight SCA (us)	Full SCA 4.1 (us)
128	17.30	17.20	189.00
256	17.30	18.40	189.00
512	17.30	19.00	196.00
1024	17.30	20.80	200.00
2048	17.30	21.00	216.00
4096	17.50	21.00	240.00

Total time consumption comparison with different amount of packets

Amount of packets	STRS (s)	Lightweight SCA 4.1 (s)	Full SCA 4.1 (s)
100,000	17.50	21.00	240.00
200,000	40.10	42.20	476.00
300,000	66.70	63.60	715.00
400,000	81.60	85.00	946.00
500,000	101.90	105.40	1190.00
600,000	119.20	125.40	1441.00
700,000	143.10	147.80	1669.00
800,000	164.90	162.20	1905.00
900,000	184.10	191.00	2142.00
1,000,000	201.70	207.40	2399.00

Inter-components communication time comparison with different numbers of components

Number of components	STRS (us)	Lightweight SCA 4.1 (us)	Full SCA 4.1 (us)	
3	15.50	23.00	175.00	
4	16.00	19.67	186.67	
5	16.75	20.50	197.50	
6	16.00	19.80	208.00	
7	16.50	21.33	211.67	
8	16.43	20.14	218.57	
9	17.00	20.75	227.50	
10	17.22	20.22	233.33	
11	17.50	21.00	240.00	

Waveform deployment delay comparison with different numbers of components

Number of components	STRS (ms)	Lightweight SCA 4.1 (ms)	Full SCA 4.1 (ms)
3	12	46.7	843.3
4	13.3	51	1078
5	14.7	55	1318
6	16	58.7	1588
7	17.7	62	1841.8
8	18.7	65.3	2130
9	20	69.7	2385
10	20.5	73	2641.6
11	21	79.6	2903.7

Waveform switching delay comparison with different numbers of components

Number of components	STRS (ms)	Lightweight SCA 4.1 (ms)	Full SCA 4.1 (ms)
3	13	51.6	880.6
4	14.6	56	1124
5	15.7	60	1376.3
6	17.7	64.4	1661.6
7	19.4	67.7	1930.4
8	20.4	71.3	2234
9	21.6	76.7	2502
10	22.2	79	2769.6
11	23	85.9	3035.1

2017 Wireless Innovation Forum European Conference on Communications Technologies and Software Defined Radio

Lightweight SCA 4.1 and STRS have very close transfer efficiency.

Their transfer delay is almost 1/10 of full SCA 4.1.

Reasons of low efficiency in full SCA 4.1:

- the creation and communication between processes
- the adoption of object request broker (ORB) mode

2017 Wireless Innovation Forum European Conference on Communications Technologies and Software Defined Radio

STRS Advantages:

- high efficiency
- the ability to suit the resource-limited lightweight platform

STRS Disadvantages:

- low portability and interoperability
- difficulty for the application developer

SCA 4.1 Advantages:

- high flexibility
- providing different SCA Profiles
- reducing the expenditure with thread communication

SCA 4.1 Disadvantages:

- high waveform deployment delay
- high waveform switching delay
- large static memory occupation

Recommendation:

- Lightweight SCA 4.1 is worth considering for space radios owing to its high efficiency.
- Users should pay attention to waveform deployment, switching delay and static memory occupation.

Future work:

- Carrying out experiments in platform with limited computing capability and memory size.
- Evaluate the power consumption of different architectures.

2017 Wireless Innovation Forum European Conference on Communications Technologies and Software Defined Radio

Thank you! Q&A

